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RESEARCH ARTICLE

Uncertain seas: probabilistic modeling of future coastal flood
zones
Christopher J. Amante

Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO,
USA; National Oceanic and Atmospheric Administration, National Centers for Environmental Information,
Boulder, CO, USA

ABSTRACT
Future sea-level rise will likely expand the inland extent of storm
surge inundation and, in turn, increase the vulnerability of
the people, properties and economies of coastal communities.
Modeling future storm surge inundation enhanced by sea-level
rise uses numerous data sources with inherent uncertainties. There
is uncertainty in (1) hydrodynamic storm surge models, (2) future
sea-level rise projections, and (3) topographic digital elevation
models representing the height of the coastal land surface. This
study implemented a Monte Carlo approach to incorporate the
uncertainties of these data sources and model the future 1% flood
zone extent in the Tottenville neighborhood of New York City
(NYC) in a probabilistic, geographical information science (GIS)
framework. Generated spatiotemporal statistical products indicate
a range of possible future flood zone extents that results from the
uncertainties of the data sources and from the terrain itself. Small
changes in the modeled land and water heights within the esti-
mated uncertainties of the data sources results in larger uncer-
tainty in the future flood zone extent in low-lying areas with
smaller terrain slope. An interactive web map, UncertainSeas.
com, visualizes these statistical products and can inform coastal
management policies to reduce the vulnerability of Tottenville,
NYC to future coastal inundation.
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Introduction

The rate of global sea-level rise will likely increase due to increases in ocean temperature
and increases in land-ice melt (Parris et al. 2012, Church 2013). Coastal properties are
already prone to flooding and coastal flooding is expected to be exacerbated by future
sea-level rise (Wong et al. 2014, Sweet et al. 2017, Fleming 2018). In 2012, Superstorm
Sandy resulted in approximately $19 billion in damage and 48 lives lost in New York City
(NYC, Blake et al. 2013). There were two deaths in the Tottenville neighborhood of NYC
during Superstorm Sandy, and this neighborhood is the case study for modeling future
flood zones from storm surge inundation enhanced by sea-level rise.

Sea-level rise in NYC has already increased the number and magnitude of coastal
flood events (Sweet et al. 2013, Talke et al. 2014), and coastal flood zones will likely
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expand in NYC in the future (Horton et al. 2015). Sea-level rise is a relatively slow
process, however, it will likely continue to increase the frequency, magnitude, and
duration of storm surge inundation (Parris et al. 2012). Future storm surge inundation
enhanced by sea-level rise will, in turn, likely increase the vulnerability of the people,
properties and economy of NYC.

Modeling future storm surge inundation enhanced by sea-level rise uses numerous data
sources with inherent uncertainties. There is uncertainty in (1) hydrodynamic storm surge
models, (2) future sea-level rise projections, and (3) topographic digital elevation models
(DEMs) representing the height of the coastal land surface above established vertical
datums. This study implements a Monte Carlo approach to incorporate the uncertainties
of these data sources and model the future 1% flood zone extent in the Tottenville
neighborhood of NYC in a probabilistic, geographical information science (GIS) framework.

Literature review

The following sections provide background information on storm surge, sea-level rise,
and DEMs, and their inherent uncertainties, as well as previous research on modeling
future storm surge inundation enhanced by sea-level rise.

Storm surge

Storm surge is the build-up of water onto coastal land from wind shear stress associated
with intense low-pressure weather systems, such as tropical and extratropical cyclones
(Murty et al. 1986). Present-day coastal flood zones from storm surge inundation are
typically determined by hydrodynamic models including the Sea, Lake, and Overland
Surges from Hurricanes (SLOSH, Jelesnianski et al. 1992) and the ADvanced CIRCulation
(ADCIRC, Luettich et al. 1992) models.

Many studies use hydrodynamic models, such as SLOSH and ADCIRC, directly to
delineate potentially inundated areas (e.g., McInnes et al. 2003, 2013, Kleinosky et al.
2007, Frazier et al. 2010, Shepard et al. 2012, Atkinson et al. 2013, Ding et al. 2013, Zhang
et al. 2013, Maloney and Preston 2014). Other coastal inundation studies use products
derived from storm surge model outputs, such as the Federal Emergency Management
Agency (FEMA) Flood Insurance Rate Maps (FIRMs, e.g., Patrick et al. 2015). FEMA FIRMs
are typically derived from outputs from ADCIRC and coupled wave models, such as the
Simulating WAves Nearshore (SWAN) model (Algeo and Mahoney 2011, FEMA 2014,
Kress et al. 2016). FIRMs determine flood insurance rates based on the 1% annual chance
of inundation and identify where flood insurance is required as a condition of
a federally-backed mortgage (Burby 2001).

Sources of uncertainty in storm surge models and, consequently, in derived products
such as FEMA FIRMs, originate from the input parameters, including wind speed and
direction, bathymetry, topography, friction coefficients, and boundary conditions
(Atkinson et al. 2013). There is also uncertainty in the historical meteorological data on
extreme events and the choice of statistical functions that represent their occurrence
(McInnes et al. 2003).
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Sea-level rise

Sea-level rise provides an elevated water base for storm surge to build on, and future
sea-level rise will likely continue to increase the frequency, magnitude, and duration of
storm surge inundation (Parris et al. 2012). Coastal flooding occurs at the land-water
interface, and, therefore, local information on the relative vertical movement between
the land and water surface is required to model future flood zones. Local sea-level
projections can diverge from the global mean due to differences in ocean temperature,
salinity, currents, and land elevation changes due to glacial isostatic adjustment, human
extraction of ground water, and tectonic processes (Nerem and Mitchum 2001, Cazenave
and Nerem 2004, Lombard et al. 2005, Milne et al. 2009, Church 2013). Relative sea-level
rise in NYC is expected to exceed the global average primarily due to local land
subsidence and to increases in regional sea-level, due in part to projected weakening
of the Gulf Stream current (Yin et al. 2009, 2010, Kenigson and Han 2014, Horton et al.
2015).

Other regional factors that can affect future sea-level in NYC include climate modes,
such as the North Atlantic Oscillation (NAO, Barnston and Livezey 1987, Hurrell 1995,
Kopp 2013, Han et al. 2017) and the Atlantic Multidecadal Oscillation (AMO, Trenberth
and Shea 2006, Wang and Zhang 2013, Han et al. 2017). Han et al. (2017) identified
limitations of understanding regional sea-level change, including representation of these
climate modes, interactions among climate modes, effects of anthropogenic forcing on
the modes, effects of ocean internal variability, and limited observational records. These
limitations must be addressed to fully understand the climate modes’ impact on
regional sea-level, and to reduce uncertainty in future sea-level rise projections (Han
et al. 2017).

Digital elevation models (DEMs)

The topographic elevation above sea-level is a primary factor that determines the inland
extent of coastal flooding. Accordingly, one of the most common methods for modeling
coastal inundation is ‘bathtub modeling.’ Bathtub modeling delineates flood zones as
areas where coastal land elevation values are below a modeled water height that
represents a sea-level rise projection and/or storm surge level (e.g., Poulter and Halpin
2008, Gesch 2009, 2012, 2013, Leon et al. 2014, Schmid et al. 2014, West et al. 2018).
Different representations of the topographic elevations, consequently, can result in large
differences in the modeled flood zones (Coveney and Fotheringham 2011, Zhang 2011,
West et al. 2018), especially for low-lying coastal areas (Van de Sande et al. 2012).
Estimations of potential DEM errors, i.e., DEM uncertainty, should, therefore, be incorpo-
rated in flood models to produce a range of possible flood zones.

DEMs can be generated from various data sources and methods (Nelson et al. 2009,
Wilson 2012, Maune and Nayegandhi 2018), including traditional ground-surveys with
theodolites (Nelson et al. 2009), satellite-derived stereo photogrammetry (Shean et al.
2016, Almeida et al. 2019), structure-from-motion (Mancini et al. 2013), radio detection
and ranging (RADAR) interferometry (Rabus et al. 2003), and light detection and ranging
(LIDAR, Maune and Nayegandhi 2018). These various data sources and methods result in
DEMs with different spatial resolutions and vertical accuracies (Nelson et al. 2009).
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Furthermore, coastal DEMs are often generated by integrating numerous elevation data
sources of disparate age, quality and measurement density (Eakins and Taylor 2010,
Eakins and Grothe 2014, Amante 2018b), resulting in spatially-varying vertical uncer-
tainty (Amante 2018b).

Modeling future storm surge inundation enhanced by sea-level rise

There are two general methodologies to model future storm surge inundation enhanced
by sea-level rise: dynamic (also known as hydrodynamic or numerical simulation) and
static (also known as bathtub) modeling. Dynamic modeling evaluates sea-level rise
projections, and changes storm surge and wave model input variables, such as ocean
depths and bottom friction coefficients, before modeling storm surge (Atkinson et al.
2013, Zhang et al. 2013, Orton et al. 2015).

Conversely, static modeling evaluates sea-level rise projections after obtaining the
output from present-day storm surge and wave models, or indirectly, such as with the
present-day FEMA FIRM 1% flood zone, in a GIS framework (Zhang et al. 2013, Leon et al.
2014, Patrick et al. 2015). The static, linear addition by expansion method adds a sea-
level rise increment to the present-day modeled storm surge heights. The future storm
surge inundation area is then delineated as areas where the cumulative water levels are
greater than the DEM values (McInnes et al. 2013, Zhang et al. 2013). The linear addition
by expansion method does not incorporate physical forces on the water movement
considered in dynamic modeling, such as differences in bottom friction due to changing
water depths and landscape characteristics. However, the linear addition by expansion
method more closely mimics the results of dynamic methods compared to other static
methods (Zhang et al. 2013).

Inland local depressions that have elevations below a projected water level and are
not connected to the ocean are incorrectly inundated in GIS-based, static methods that
do not implement water connectivity algorithms (e.g., Titus and Richman 2001). In these
cases, terrain barriers exist between the ocean and the low-lying areas that would
prevent inundation (Li et al. 2009). In studies that implement water connectivity algo-
rithms, areas are considered inundated only where their elevations are less than the
modeled water levels and are also adjacent to the current or modeled future ocean area
(e.g., Poulter and Halpin 2008, Gesch 2009, Li et al. 2009, Zhang et al. 2013). Adjacency is
typically defined by either 4 or 8 neighbors in a 3 × 3 kernel. The 4-neighbor case only
considers the 4 cardinal directions (i.e., N, E, S, W), and the 8-neighbor case considers all
adjacent cells (i.e., N, NE, E, SE, S, SW, W, NW).

Dynamic methods of modeling future storm surge inundation enhanced by sea-level
rise are more complex than GIS-based, static methods, which results in larger computa-
tional expense. Consequently, dynamic methods typically cannot simulate numerous
sea-level rise projections, storm surge scenarios, and DEM realizations to incorporate the
uncertainties of these data sources (Orton et al. 2015). Zhang et al. (2013) found that
dynamic methods require approximately 30 to 60 times more computation time than
the static linear addition by expansion method to model future storm surge inundation
enhanced by a given sea-level rise projection. Therefore, computational expense is
greatly reduced if static methods can approximate dynamic methods of modeling future
coastal flood zones (Zhang et al. 2013).
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GIS-based, static methods assume storm surge inundation dynamics are the same
with current and future sea-levels, and the enhanced storm surge heights are simply the
linear addition of the present-day storm surge heights and the future sea-level rise.
However, the relationship between storm surge heights and sea-level rise can be non-
linear in shallow water due to changes in bottom friction and shoreline configuration
(Lowe et al. 2001, Lowe and Gregory 2005, Loder et al. 2009, Ding et al. 2013, Zhang
et al. 2013).

There are a few, notable studies that directly compare the results of dynamic and GIS-
based, static modeling of future coastal inundation (e.g., Zhang et al. 2013, Orton et al.
2015, Patrick et al. 2015, Seenath et al. 2016). Zhang et al. (2013) determined that inunda-
tion areas and peak storm surge heights generated by the static, linear addition by
expansion method differed from the dynamic method by only 7% and 4% on average,
respectively. Seenath et al. (2016) also determined that a GIS-based, static method pro-
duced an inundation area that was within 5% of dynamic methods.

Two studies modeled future storm surge inundation enhanced by sea-level rise in NYC
to compare GIS-based, static methods (Patrick et al. 2015) and dynamic methods (Orton
et al. 2015). The static and dynamic methods resulted in similar storm surge heights for
most locations (usually within approximately ± 0.15-m) and resulted in similar future flood
zone boundaries (Orton et al. 2015). The main purpose of these NYC studies was to
compare static and dynamic methods, however, both studies acknowledged limitations
due to the lack of incorporation of input data uncertainties into their analyses. Specifically,
Patrick et al. (2015) stated estimates of uncertainty associated with the elevation, sea-level
rise, and FEMA flood heights should be used to determine the degree of confidence in the
flood model outputs.

Lin et al. (2012) also determined that static methods were an excellent approximation of
dynamic methods in NYC. The bottom friction is expected to remain relatively constant
under future sea-level rise in urban areas, where the existing land cover is not dominated
by vegetation, and, consequently, the effect of changes to bottom friction is expected to be
minor compared to the effect of the water level increase from sea-level rise (Atkinson et al.
2013). These previous studies indicate that GIS-based, static methods can approximate
dynamic modeling of future flood zones in NYC. Importantly, static methods enable the
incorporation of input data uncertainties to determine the likelihood of the future flood
zone extent in a probabilistic framework, which would be computationally impractical with
dynamic methods.

Probabilistic future flood models

Deterministic flood models that do not consider input data uncertainties can result in
inaccurate and misleading future coastal flood zones, and potentially inappropriate
coastal management policies (West et al. 2018). Probabilistic flood models that consider
these data uncertainties can reduce the conveyed over-confidence of a single, determi-
nistic flood model, demonstrate the effect of data uncertainties on the flood model, and
produce a range of possible alternative flood model outcomes (Cowell et al. 2006, Hare
et al. 2011, Wallentin and Car 2013, Winter et al. 2018). Flood models should, therefore,
incorporate the uncertainties in storm surge models, sea-level rise projections, and DEMs
in a probabilistic framework to determine future coastal flood zones. Probabilistic flood
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models can then inform coastal management policies by indicating the likelihood of the
future flood zone extent.

Several previous studies modeled future flood zones by incorporating the uncertainty in
one or two of the major sources of input data, i.e., present-day storm surge, sea-level rise
projections, and DEM (e.g., Gesch 2009, 2012, 2013, Li et al. 2009, Neumann et al. 2010,
Zhang 2011, Strauss et al. 2012, Albert et al. 2013, Cooper and Chen 2013, Leon et al. 2014,
Schmid et al. 2014, Kane et al. 2015, West et al. 2018). There is limited research on modeling
future storm surge inundation enhanced by sea-level rise that incorporates these three
major sources of uncertainty in a probabilistic framework. Furthermore, almost all previous
studies focused on the spatial uncertainty of inundation extent that results from the
uncertainties of these data sources. One notable exception, Kane et al. (2015), determined
the time frame when sea-level rise could result in a rapid increase in areas prone to
flooding.

Leon et al. (2014) incorporated DEM uncertainty in modeling the combined effect of
a uniform 1% storm surge height of 2.9-m and a 1-m sea-level rise projection. Leon et al.
(2014) improved the incorporation of DEM uncertainty in coastal flood models by
spatially distributing DEM errors based on land cover and terrain variables. Specifically,
Leon et al. (2014) quantified vertical errors as differences between the DEM and more
accurate real-time kinematic (RTK) GPS elevation measurements. The errors were then
correlated with land cover and terrain variables and 1,000 vertical error surfaces were
generated using sequential Gaussian simulations and regression-kriging in a Monte
Carlo, probabilistic approach. A generated error surface was added to the DEM in each
simulation and the probability of future inundation was calculated as the proportion of
times a DEM cell was inundated from 1,000 simulations. Leon et al. (2014), however, only
modeled one sea-level rise projection, and, therefore, did not incorporate the uncer-
tainty of future sea-level rise. Furthermore, Leon et al. (2014) modeled a uniform storm
surge height of 2.9-m for the entire study area. Storm surge heights typically vary along
a coastline due to the offshore bathymetry and nearshore topography (Jelesnianski et al.
1992, McInnes et al. 2003).

The methods in Leon et al. (2014), and their limitations, informed the GIS framework
for probabilistic modeling of future coastal flood zones in this study. Specifically, this
study implemented a similar probabilistic approach as Leon et al. (2014) that incorpo-
rated DEM uncertainty, and also incorporated the uncertainties in the present-day 1%
flood zone from storm surge and future sea-level rise projections.

Methodology

This study implemented a Monte Carlo approach to model the future 1% flood zone
extent in Tottenville, NYC in a probabilistic, GIS framework. The future flood model
incorporated the uncertainties in a topographic DEM, present-day 1% flood zone from
storm surge, and future sea-level rise projections. A 500-member, future flood model
ensemble was generated from random combinations of input data realizations within
estimated uncertainty bounds. Open source software, including MB-System (Version
5.4.2220, Caress and Chayes 1996) and Python Version 2.7, was used to develop the
future flood model and to derive spatiotemporal statistical products from the Monte
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Carlo ensemble. The derived statistical products can inform coastal management poli-
cies by indicating the likelihood of the future 1% flood zone extent in Tottenville, NYC.

Study area

Tottenville is the southernmost neighborhood of Staten Island, NYC (Figure 1). The land-
use in Tottenville is primarily residential, and the neighborhood is surrounded by water
in three cardinal directions. The Arthur Kill is located to the west, and the Raritan Bay is
located to the south and to the east of the neighborhood. Tottenville has a maximum
elevation of ~30-m above the North American Vertical Datum 1988 (NAVD 88). Most of
the neighborhood is currently protected from coastal flooding at these higher eleva-
tions, however, additional areas will likely become prone to future storm surge inunda-
tion enhanced by sea-level rise and be in the future 1% flood zone.

Digital elevation model (DEM)

Woolpert, Inc. collected topographic LIDAR between March 21–21 April 2014 for the U.S.
Geological Survey (USGS) Coastal Marine and Geology Program (CMGP) Post-Sandy
project (Woolpert 2014). The data set was collected to achieve a maximum nominal
post spacing of LIDAR returns of 0.7-m, and 0.42-m horizontal accuracy at 95%

Figure 1. The Tottenville neighborhood of Staten Island, NYC is the study area to model future
coastal flood zones.
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confidence (Woolpert 2014). The overall vertical accuracy for bare-earth LIDAR returns
was 5.3-cm root mean square error (RMSEz, Woolpert 2014).

A bare-earth, topographic DEM (Figure 2, Left Panel) was generated from the LIDAR
bare-earth returns with spline interpolation from the open-source software tool, MB-
System’s ‘mbgrid.’ The generated DEM was referenced horizontally to the World
Geodetic System 1984 (WGS 84) and vertically to NAVD 88. The DEM spatial resolution,
1/9th arc-second (~3-m), followed the highest-resolution of the framework collabora-
tively developed by NOAA National Centers for Environmental Information (NCEI) and
USGS (Eakins et al. 2015). Refer to Eakins and Taylor (2010) and Eakins and Grothe (2014)
for additional details on NOAA NCEI coastal DEM generation and associated challenges.

An uncertainty surface that estimated potential DEM cell-level vertical errors at one
standard deviation (Figure 2, Right Panel) was generated with the methods from Amante
(2018b). The uncertainty surface represented contributions from the (1) measurement
uncertainty provided in the LIDAR metadata (i.e., 5.3-cm RMSEz) with an assumed non-
biased, normal distribution, (2) number of measurements per DEM cell, (3) subcell
measurement variance, and (4) interpolation uncertainty in cells unconstrained by
measurements. In DEM cells with LIDAR bare-earth returns, the cell-level vertical uncer-
tainty was calculated from a pooled standard deviation that incorporated the measure-
ment uncertainty of 5.3-cm RMSEz, and subcell measurement variance from the mean
elevation of the DEM cell. The pooled standard deviation was divided by the square root
of the number of measurements in the DEM cell to calculate the standard deviation of
the mean, i.e., the standard error, to represent the DEM cell-level vertical uncertainty.
There was additional uncertainty in interpolated DEM cells with no LIDAR bare-earth
returns (e.g., water bodies and within building footprints), with larger distances from
elevation measurements resulting in larger interpolation uncertainty (Amante and Eakins
2016, Amante 2018b). Refer to Amante (2018b) for additional details on the methods to
estimate coastal DEM uncertainty at the individual cell-level.

Amante (2018b) created a DEM uncertainty surface that was spatially correlated with
land cover and terrain slope. To confirm these results from Amante (2018b), this study

Figure 2. The DEM (Left Panel) and derived vertical uncertainty surface at one standard deviation
(Right Panel). The largest uncertainties, and consequently, the largest differences between the DEM
realizations in the future flood model, are located where there are large interpolation distances due
to no LIDAR bare-earth returns, including inland bodies of water and within building footprints.
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calculated the average cell-level uncertainty for land cover classes from the 2010 NYC
Department of Parks and Recreation land cover raster (NYC Department of Parks and
Recreation 2010). Furthermore, this study quantified the effect of both the land cover
and terrain slope derived from the DEM (Figure 3) on the magnitude of the cell-level
uncertainty with Spearman’s rank correlation coefficients (Spearman 1904).

The two land cover classes with the largest, average cell-level uncertainty were the
‘water’ and ‘building’ classes due to few LIDAR bare-earth returns and interpolated DEM
values in cells unconstrained by elevation measurements (Table 1). The two land cover
classes with the smallest, average cell-level uncertainty were the ‘road/railroad’ and ‘bare

Figure 3. The terrain slope derived from the DEM. The slope varies within the study area, with larger
terrain slope along the western coastline and smaller terrain slope along the southern coastline of
the neighborhood.

Table 1. Effect of land cover and terrain slope on the magnitude of the DEM cell-level uncertainty.
The number of DEM cells, i.e. sample size, for each of the four land cover classes was greater than
3,800, and all Spearman’s rank correlation coefficients had p-values less than 0.001.

Land Cover Class

Avg. Cell-level
Uncertainty: 1
St. Dev. (m)

Avg. Num. of
Measurements
per DEM Cell

Avg.
Slope

(degrees)

Spearman’s Coefficient:
Uncertainty and Num. of

Measurements

Spearman’s
Coefficient:

Uncertainty and Slope

Water 0.267 ~ 4 1.586 −0.745 −0.649
Building 0.218 ~ 2 2.628 −0.551 0.025
Bare Soil 0.031 ~ 15 4.275 −0.176 0.671
Road/Railroad 0.028 ~ 10 1.681 −0.501 0.339
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soil’ classes due to effective laser pulse penetration in open terrain, and consequently,
many LIDAR bare-earth returns per DEM cell (Table 1).

The Spearman’s rank correlation coefficients indicated a negative correlation between
the magnitude of the DEM uncertainty and the number of measurements for these four
land cover classes (Table 1), i.e., more measurements per DEM cell resulted in smaller
cell-level uncertainty, as expected per Amante (2018b). With the exception of the ‘water’
class, the terrain slope was positively correlated with the cell-level uncertainty (Table 1),
as larger terrain slope resulted in larger subcell measurement variance, as expected per
Amante (2018b). Topographic LIDAR systems typically do not produce bare-earth returns
within water bodies. In such areas, DEM values were interpolated based on the eleva-
tions of bare-earth returns on the perimeters of these water bodies and produced
relatively flat elevation surfaces. DEM uncertainty, therefore, was negatively correlated
with terrain slope for the ‘water’ class because areas with the largest elevation uncer-
tainty were in the center of water bodies due to large interpolation distances from the
LIDAR bare-earth measurements, and these areas have small slope values. The DEM
uncertainty was most positively correlated with terrain slope for the ‘bare soil’ class
(Table 1), due to larger subcell measurement variance in steep, near-shore sand dunes.

This study generated DEM realizations for the future flood model using the DEM and
derived cell-level uncertainty surface at one standard deviation. A normal, non-biased
distribution was assumed, and the ‘best-case’ and ‘worst-case’ error realizations were
created by multiplying the entire uncertainty surface at one standard deviation by 1.96
and −1.96 to represent the 95% confidence interval, respectively. The resulting error
realizations were each added to the original DEM to create the ‘best-case’ and ‘worst-
case’ DEM realizations, respectively. 498 additional, intermediate DEM realizations were
then randomly generated using the derived uncertainty surface at one standard devia-
tion and a mean of zero with the Numerical Python (NumPy) package function ‘numpy.
random.normal’. A 3 × 3 low-pass filter was applied to reduce the introduced noise and
maintain the spatial autocorrelation of the terrain (Wechsler and Kroll 2006, Wechsler
2007), and each resulting error realization was added to the original DEM. The 500
generated DEM realizations, with a normal distribution, represented the DEM uncer-
tainty incorporated in the future flood model.

Present-day storm surge

Two versions of the present-day FEMA 1% flood zones, the current, accepted 2007 FIRM,
and the 2013 Preliminary FIRM, represented the ‘best-case’ and ‘worst-case’ scenarios of
the present-day storm surge and wave heights in the future flood model, respectively.
On 17 October 2016, FEMA announced the administration of the mayor of NYC, Bill de
Blasio, won its appeal of the 2013 Preliminary FIRM, and FEMA agreed to revise the NYC
FIRM (FEMA 2016). The appeal cited two primary sources of bias in the storm surge and
offshore wave models that resulted in more inland areas within the 1% flood zone than
warranted: (1) insufficient extratropical storm model validation and (2) misrepresentation
of tidal effects for extratropical storms (Zarrilli 2015).

498 additional, intermediate present-day 1% flood zone realizations were randomly
generated between the 2007 and 2013 FIRM 1% flood zone extents. Intermediate,
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present-day total flood areas were randomly sampled between the total areas in the 1%
flood zone for the 2007 and 2013 FIRMs with the python function ‘numpy.random.
uniform.’ Next, initial water levels were estimated as the elevation values from the
original DEM along the inland extent of the 2007 FIRM 1% flood zone. The initial water
levels were iteratively raised by 0.01-m and the linear addition by expansionmethod was
used to flood additional areas where the cumulative water levels were greater than the
DEM values. Additional areas were flooded beyond the 2007 FIRM, but within the 2013
FIRM 1% flood zone, until the randomly sampled total flood area criteria was met.
Generating intermediate present-day 1% flood zone realizations based on the DEM
was more realistic than realizations based on arbitrary distances between the 2007
and 2013 FIRM 1% flood zone extents. Figure 4 illustrates the intermediate present-
day 1% flood zone realizations between the 2007 and 2013 FIRMs.

Storm surge is typically a larger factor in coastal flooding than wave action for
locations with wide and gently sloping continental shelves (Walsh et al. 2012), such as
off the U.S. East Coast. Accordingly, this study refers to the initial water level heights in
the future flood model derived from the 1% flood zone realizations simply as storm
surge heights. The 500 generated present-day 1% flood zone realizations, with a uniform
distribution, represented the present-day storm surge uncertainty incorporated in the
future flood model.

Figure 4. The present-day FEMA 1% flood zone represented by the 2007 FIRM and 2013 Preliminary
FIRM. Intermediate, present-day 1% flood zone realizations were randomly generated between these
two FIRMs based on the DEM; darker colors between the two FIRMs represent areas more likely to
be in the present-day 1% flood zone realizations.

2198 C. J. AMANTE



Sea-level rise

This study incorporated local sea-level rise projections from the NYC Panel on Climate
Change (NPCC) 2015 report in the future flood model (Horton et al. 2015). The NPCC
2015 report aggregated individual components of sea-level rise to generate low (i.e., 10th

percentile) and high (i.e., 90th percentile) sea-level rise estimates (Horton et al. 2015). The
individual components included global thermal expansion, local changes in ocean
height, loss of ice from Greenland and Antarctic ice sheets, loss of ice from glaciers
and ice caps, gravitation, rotational, and elastic ‘fingerprints’ of ice loss, vertical land
movements/glacial isostatic adjustments, and land-water storage (Horton et al. 2015).
Refer to Table 2.2 in Horton et al. (2015) for the NPCC specific estimates of sea-level rise
for the 2020s, 2050s, 2080s, and 2100.

The NPCC sea-level rise projections were referenced to a 2000–2004 baseline. This
study modified the NPCC sea-level rise projections to be relative to 2014, which is
the year of the LIDAR collection that generated the DEM. The relative sea-level trend
from a nearby NOAA Tides and Current station (Sandy Hook, New Jersey, NOAA 2018)
indicated a linear rate of 0.406-cm sea-level rise per year. Accordingly, the year 2002 was
considered the middle of the baseline, and the NPCC low and high estimates were
reduced by 4.872-cm to approximate the future sea-level rise projections relative to
2014. Two future sea-level rise projections were derived for each decade through 2100
from the NPCC low and high estimates with 2nd degree polynomials using the python
function ‘numpy.polyfit’, to represent the ‘best-case’ and ‘worst-case’ scenarios, respec-
tively. 498 additional, intermediate sea-level rise projections were then derived ran-
domly between the low and high estimates with the python functions ‘numpy.
random.uniform’ and ‘numpy.polyfit’ (Figure 5). The 500 generated sea-level rise projec-
tions, with a uniform distribution, represented the sea-level rise uncertainty incorporated
in the future flood model.

Future flood model

The future flood model implemented the GIS-based, static linear addition by expansion
method with Python Version 2.7, and, primarily, the NumPy and Scientific Python (SciPy)
packages. First, initial storm surge heights were estimated as the elevation values from
the original DEM along the inland extent of the randomly generated present-day 1%
flood zone realization. A randomly generated sea-level rise projection was then added to
these initial water heights and additional inundated areas were determined iteratively
with array convolution and arithmetic functions from the SciPy and NumPy packages,
respectively (Figure 6).

Starting at the inland extent of the randomly generated 1% flood zone realization, the
water heights of the dry cells in the randomly generated DEM realization were calculated
as the average water height of adjacent inundated cells. The dry cells then became
inundated if their elevations were less than these calculated average water heights. This
process was repeated until no new dry cells were inundated. The flood model recorded
the year at which the calculated average water heights from the randomly generated
present-day storm surge heights and future sea-level rise projection became greater
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than each DEM realization cell. An 8-neighbor water connectivity algorithm defined the
cell adjacency and was implemented to avoid incorrectly inundating inland local
depressions not connected to the present-day or modeled future ocean. The 8-neighbor
algorithm was implemented to model the ‘worst-case’ scenario of water connectivity, as
the 4-neighbor algorithm is a conservative estimate of water connectivity and can
potentially result in less inundation due to terrain barriers of water flow.

Figure 6. Illustrative schematic of the future flood model. The present-day 1% flood extent indicates
the current coastal flood zone (Left Panel). The future 1% flood zone (Right Panel) is determined by
adding a sea-level rise projection (e.g., 1-m sea-level rise (SLR)) to the water heights estimated from
the DEM values along the present-day 1% flood extent. Additional areas are flooded where the
cumulative water heights are greater than the DEM values.

Figure 5. 500 randomly generated sea-level rise projections within the low and high estimates of
sea-level rise in the NPCC 2015 report, relative to 2014. The differences in projected sea-level rise
increases in future years due primarily to increasing uncertainty in the magnitude of ice sheet melt.
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Monte Carlo simulations

This study implemented a Monte Carlo approach to incorporate random combinations
of input data realizations and create a 500-member, future flood model ensemble (e.g.,
Heuvelink et al. 1999, Cooper and Chen 2013, Leon et al. 2014, Schmid et al. 2014, West
et al. 2018). Each of the 498 intermediate simulations consisted of randomly generated
input data realizations within the minimum and maximum DEM, sea-level rise, and storm
surge values in Table 2. The year inundated for each DEM cell was recorded in each
simulation, resulting in a distribution of years inundated for each cell based on the
random combinations of the input data realizations. Spatiotemporal statistical products
were then generated from the cell-level distributions of the year inundated to indicate
the likelihood of the future 1% flood zone extent in Tottenville, NYC. The effect of the
input data realizations on the modeled total area in the future 1% flood zone was also
quantified with Spearman’s rank correlation coefficients (Spearman 1904).

Interactive web map to host statistical products

An interactive web map, UncertainSeas.com, visualizes the spatiotemporal statistical
products that depict the future 1% flood zone in Tottenville, NYC. One statistical product
depicts the annual probability of the future 1% flood zone for each decade through
2100. The annual probability was calculated for each DEM cell as the number of times
the cell was flooded by the specified year out of the 500-member ensemble, and larger
probabilities indicate areas more likely to be located within the future 1% flood zone.

Another statistical product, alternatively, depicts the year in which each DEM cell
exceeds a given annual probability of being in the future 1% flood zone. This probability
exceedance year statistical product can be especially useful for local coastal manage-
ment policies because communities can have much different risk tolerances to coastal
flooding. This statistical product can indicate when a community should implement
policies to reduce the vulnerability of an area to flooding, depending on their risk
tolerance. For example, ‘Community Z’ will implement policies to reduce the vulner-
ability of an area to coastal flooding only when there is a 95% chance of the area being
in the future 1% flood zone (i.e., they have a high-risk tolerance). Conversely,
‘Community Y’ is risk-averse and will implement policies to reduce the vulnerability of
the same area when there is a 5% chance of the area being in the future 1% flood zone.
These different risk tolerances would result in ‘Community Y’ implementing policies to
reduce the vulnerability of an area to coastal flooding earlier than ‘Community Z.’

Table 2. Input data in the Monte Carlo simulations, and their ‘best-case’ and ‘worst-case’ values that
delineate the future minimum and maximum flood zone extents, respectively. 498 additional, random
combinations of each input data source realization within the minimum and maximum flood extent
values generated the 500-member ensemble. The DEM realizations were randomly sampled from
a normal distribution, whereas the sea-level rise and storm surge realizations were randomly sampled
from a uniform distribution between the minimum and maximum values in this table.
Input data Data source Minimum flood extent Maximum flood extent

DEM USGS DEM + (1.96 * Uncertainty Surface) DEM – (1.96 * Uncertainty Surface)
Sea-level Rise NPCC Low Sea-level Rise Estimate High Sea-level Rise Estimate
Storm Surge FEMA 2007 FIRM 1% Flood Extent 2013 Preliminary FIRM 1% Flood Extent
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Results

The future flood model for Tottenville, NYC incorporated multiple input data uncertain-
ties in a GIS, probabilistic framework. Figure 7 indicates the Tottenville land area in the
future 1% flood zone through the year 2100 for each of the 500 members of the Monte
Carlo ensemble. The area in the future 1% flood zone varies between approximately 1.1
to 1.8 km2 by the year 2100 and corresponds to the input data values that produce the
minimum and maximum flood extents in Table 2, respectively.

Figure 8 illustrates the effect of the input data realizations on the total area in the
future 1% flood zone for every decade through 2100. The storm surge realizations have
the largest correlation coefficients with the total area in the future flood zone between
2020–2050. After 2050, the sea-level rise realizations have larger correlation coefficients
with the total area in the future 1% flood zone due to larger uncertainty in sea-level rise
projections in these more distant decades. The correlation coefficients between the
storm surge and sea-level rise realizations and the total area in the future 1% flood
zone all have p-values less than 0.001 for each decade through 2100, except for the sea-
level rise realizations for the year 2020. The DEM realizations have much smaller
correlation coefficients with the total area in the future 1% flood zone and the p-values
are greater than 0.37 for each decade through 2100.

Spatiotemporal statistical products derived from the Monte Carlo ensemble hosted on
the interactive web map, UncertainSeas.com, address limitations of the non-spatial metric
of the total land area in the future 1% flood zone. These statistical products indicate areas
with high elevations in the center of the neighborhood should remain protected from
coastal inundation into the distant future (i.e., 2100), even with the ‘worst-case’ DEM, sea-
level rise, and storm surge realizations that produced the maximum flood extent in Table 2.

Figure 7. The modeled land area in the future 1% flood zone in Tottenville for each of the 500
members of the Monte Carlo ensemble.
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Conversely, low-lying areas, such as along the northern and southern coasts of Tottenville,
are already prone to coastal inundation, and the likelihood of adjacent areas being in the
1% flood zone increases in future decades, even with the ‘best-case’ realizations of the
input data in Table 2.

Probability of future flood zone

Figure 9 visualizes the annual probability of coastal locations in Tottenville being in the
future 1% flood zone for the years 2020, 2060, and 2100, respectively. The inland extent
of the future 1% flood zone remains relatively constant over time due to high elevations
in the center of Tottenville that approach ~30-m above NAVD 88, however, the like-
lihood of many coastal locations being in the future 1% flood zone increases over time
due to projected sea-level rise.

The area in the box shown in Figure 9 has larger uncertainty in the future 1% flood
zone extent due to low-lying elevations with smaller terrain slope. The probability of the
future 1% flood zone in the year 2100 in this highlighted area is shown in the left side of
Figure 10. The horizontal band of probabilities that range from 0 to 100% in the left side
of Figure 10 illustrates the uncertainty of the future flood zone extent. The right side of
Figure 10 indicates the annual probability of being in the future 1% flood zone for three
locations (A, B, and C) through 2100. The annual probability of being in the future flood
zone increases over time for these three locations due to projected increases in sea-level
rise.

Figure 8. The effect of the input data realizations on the total land area in the future 1% flood zone.
The storm surge realizations have the largest correlation coefficients with the total land area in the
future flood zone until 2050. After 2050, the sea-level rise realizations have the largest correlation
coefficients with the total land area in the future 1% flood zone.
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Figure 9. The annual probability of areas being in the future 1% flood zone for the years 2020, 2060,
and 2100. The box in each panel highlights the area of Tottenville with larger uncertainty in the
future flood zone extent, and this area is shown in greater detail in Figure 10.
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Probability exceedance year

Figure 11 illustrates the year in which each DEM cell in this same highlighted area
exceeds the 95%, 50%, and 5% annual probability of being in the future 1% flood zone.
These different highlighted probabilities correspond to potential differences in
a community’s risk tolerance to coastal flooding. For example, the highest risk tolerance
to flooding, the 95% probability, results in most areas not being in the future flood 1%
zone until after 2100. Conversely, the lowest risk tolerance, the 5% probability, results in
many of these same areas being in the 1% flood zone in the near future. Temporal
information on the expansion of future flood zones is critical for coastal management
policies, and the individual community’s risk tolerance determines when to implement
policies to reduce the vulnerability of an area to coastal flooding.

Uncertainseas.com

The interactive web map, UncertainSeas.com, visualizes the spatiotemporal statistical
products and provides a suite of decision-making tools to inform coastal management
policies in Tottenville (Figure 12). The web map hosts the statistical products that
indicate the DEM cell-level annual probability of being in the future 1% flood zone for
every decade from 2020 through 2100. The web map also hosts the novel statistical
products that spatially depict the year at which various annual probabilities of being in
the future 1% flood zone are exceeded in Tottenville (i.e., exceeds the 5%, 25%, 50%,
75%, and 95% probability).

Discussion

Studies that model future coastal inundation typically do not incorporate all major
sources of input data uncertainties, i.e., the storm surge, sea-level rise, and DEM uncer-
tainties. The probabilistic framework in this study incorporates these input data

Figure 10. The annual probability of areas being in the future 1% flood zone in the year 2100 is
highlighted for a portion of the study area (Left Panel). The band of probabilities that range from 0
to 100% illustrates the horizontal uncertainty of the future flood zone extent in this portion of the
study area. The line graph (Right Panel) indicates the annual probability of being in the future flood
zone increases over time for all three locations (A, B, and C), due to projected sea-level rise.
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Figure 11. Example of the annual probability exceedance year data product for the same portion of
the study area shown in Figure 10. The maps depict the year at which each DEM cell exceeds a given
annual probability of being in the future 1% flood zone. Three probabilities, 95%, 50%, and 5%, are
shown to represent potential differences in a community’s risk tolerance to future coastal flooding.
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uncertainties and accounts for possible non-linear interactions in modeling the future
1% flood zone extent in Tottenville, NYC.

The spatiotemporal statistical products hosted on UncertainSeas.com have many
advantages over standard reports, paper maps, and the figures in this manuscript in
depicting the future 1% flood zone and its uncertainty in Tottenville. The web map can
facilitate interactive planning for a specific location, house, business, or infrastructure
over time as coastal flood zones in Tottenville expand in the future due to projected sea-
level rise. However, web map-users must remain aware of the limitations of the gener-
ated spatiotemporal statistical products due to inherent uncertainty in geospatial data,
including the estimated storm surge, sea-level rise, and DEM uncertainties, and their
incorporation in the future flood model.

The probability exceedance year statistical product hosted on UncertainSeas.com can
be especially useful for individualized coastal management policies. This statistical
product enables a uniform probability threshold to be established based on the indivi-
dual community’s risk tolerance, and the year at which areas are prone to flooding
based on that probability threshold are depicted. The temporal information is important
for coastal management policies, and the high temporal resolution of the statistical
products, i.e., every decade, also advances previous studies, which often model only
one year in the distant future, such as the year 2100.

Future flood zone in Tottenville, NYC

Spatiotemporal statistical products generated from the Monte Carlo ensemble indicate
the future 1% flood zone extent and its uncertainty in Tottenville, NYC. One statistical
product illustrates the annual probability of being in the future 1% flood zone for each
decade through 2100. This annual probability is calculated as the proportion of times

Figure 12. Screenshot of the interactive web map, UncertainSeas.com, that hosts the spatiotemporal
statistical products indicating the future 1% flood zone in Tottenville, NYC.
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DEM cells are flooded by the given year from the 500-member ensemble and should not
be confused with the traditional, cumulative probability of flooding. For example, the
traditional, cumulative probability of flooding indicates a building located in the current
1% flood zone has a greater than 26% chance of being flooded by at least one 1%
magnitude flood over the course of the standard 30-year mortgage (Pielke, Jr. 1999,
Burby 2001). This larger, cumulative probability of flooding further emphasizes the need
to protect areas of Tottenville immediately, such as along the northern and southern
coasts of the neighborhood.

Effect of input data uncertainties

Figure 8 indicates that the storm surge realizations have the largest correlation coefficients
with the total area in the future flood zone in the coming decades (i.e., 2020–2050). This is
not surprising, given the accepted legal challenge to the 2013 Preliminary FIRM, and the
large, present-day storm surge uncertainty illustrated in Figure 4. Furthermore, there is
little consensus on how storms in NYC will change in future climates (Orton et al. 2015,
Sweet et al. 2017). There is medium confidence in a projected increase in the intensity of
hurricanes in the North Atlantic (Sweet et al. 2017). However, there is low confidence in
the projected increase in frequency of intense Atlantic hurricanes, and the associated
amplification of flooding could be offset or amplified by changes in overall storm
frequency or tracks (Sweet et al. 2017). Future sea-level rise can also reduce the rate at
which low-lying areas drain, increasing the likelihood of flooding from rainfall (Titus et al.
1987), which was not incorporated in this study. Potential changes in future storm
climatology and additional flooding from rainfall provide justification for incorporating
the ‘overly pessimistic’ 2013 Preliminary FIRM in the future flood model.

The 2007 and 2013 FIRMs have differences in the flooded elevations of greater than
1-m in the same, general vicinity along the southern coastline of Tottenville. The differ-
ences between sea-level rise projections in the near-future and the DEM realizations are
much smaller than this 1-m difference in the storm surge height representations. For
example, in the year 2025, the difference between the low and the high sea-level rise
estimates from the NPCC 2015 report is ~0.2-m (Horton et al. 2015). Differences in DEM
realizations in Tottenville are also relatively small, as the average cell-level uncertainty at
one standard deviation is only ~0.05-m due to modern, LIDAR technology (Amante
2018a). Incorporating DEM uncertainty in flood models is more important for coastal
communities with topographic elevations mapped with older, less accurate technologies,
such as with Shuttle Radar Topography Mission (SRTM) interferometric radar data (Rabus
et al. 2003). For example, SRTM elevation products have absolute height errors of 5.6-m at
the 90% confidence level for the continent of Africa (Rodriguez et al. 2005). Differences in
DEM realizations would likely have a larger effect on the modeled future flood zone for
coastal communities mapped with these older, less accurate technologies.

The effect of the input data realizations on the modeled total area in the future 1%
flood zone illustrated in Figure 8 also changes over time. The sea-level rise uncertainty
increases over time due to increasing uncertainty in the magnitude of ice sheet melt
(Horton et al. 2015), and, consequently, the sea-level rise realizations have the largest
correlation coefficients with the total area in the future 1% flood zone after 2050. It
should be noted sea-level rise uncertainty and DEM uncertainty are intertwined, as the
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sea-level rise estimates in the NPCC 2015 report consider future, local land subsidence
and its uncertainty (Horton et al. 2015).

The generated spatiotemporal statistical products illustrate the uncertainty in the
future flood zone extent that results from the uncertainties in the input data sources and
from the terrain itself. Figure 9 indicates there are portions of Tottenville with larger
horizontal bands of uncertainty in the future flood zone extent. This occurs in low-lying
areas with smaller terrain slope, such as the area highlighted along the southern coast of
Tottenville in Figures 3, 9, 10, and 11. In such areas, small changes in the modeled land
and water heights within the estimated uncertainties of the data sources results in larger
uncertainty in the future flood zone extent. Conversely, areas with larger terrain slope,
such as along the western coast of Tottenville highlighted in Figure 3, have a much
narrower band of horizontal uncertainty in the future flood zone extent. These results
support previous findings on the impact of terrain slope on the horizontal uncertainty of
the future flood zone extent (Gesch 2013, West et al. 2018). Incorporating input data
uncertainties in coastal flood models is especially important for communities with
heterogeneous terrain, such as Tottenville, which can result in low-lying areas with
smaller terrain slope having greater uncertainty in the future flood zone extent.

Limitations and future research

The estimation and incorporation of the input data uncertainties in the coastal flood
model can be improved in future research. The DEM cell-level uncertainty estimation is
limited by the incorporated measurement uncertainty from the LIDAR dataset’s metadata.
This uniform measurement uncertainty of 5.3-cm RMSEz should be refined in future
research using accurate ground control measurements because LIDAR measurement
uncertainty is typically correlated with land cover and terrain (Su and Bork 2006, Bater
and Coops 2009, Coveney and Fotheringham 2011, Spaete et al. 2011, Leon et al. 2014,
Goulden et al. 2016, West et al. 2018). This study did, however, implement methods from
Amante (2018b) that partially incorporate land cover and terrain effects on the magnitude
of DEM cell-level uncertainty. These methods consider the number of measurements per
DEM cell and the subcell measurement variance, resulting in a spatially-varying estimate of
DEM cell-level uncertainty that is correlated with land cover and terrain slope, respectively
(Table 1). Accurate ground control elevation measurements are also needed to identify
any systematic, vertical errors in the DEM, which were not rigorously quantified in this
study, but could cause differences in the modeled future coastal flood zone. Future
morphologic changes, such as coastal erosion or accretion, were also not incorporated
in the estimated DEM uncertainty. Additional components of DEM uncertainty are difficult,
if not impossible to incorporate, including future drainage modifications (e.g., canals,
ditches, culverts), and engineered barriers (e.g., levees, seawalls, flood gates, Gesch 2013).

The effect of the DEM spatial resolution on the modeled future flood zone was also
not evaluated. The DEM spatial resolution must resolve important terrain features, such
as channels or levees, which can enhance or impede the flow of water, respectively, by
considering the Nyquist-Shannon sampling theorem. The Nyquist-Shannon sampling
theorem states that terrain features must have dimensions at least twice the spatial
resolution to be resolved by the DEM (Nyquist 1928, Shannon 1949, McBratney et al.
2003, Hengl 2006). Previous research indicates the modeled flood area generally
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increases with coarser-resolution DEMs (e.g., Saksena and Merwade 2015, Hsu et al.
2016), which is a manifestation of the scale effect of the modifiable areal unit problem
(Openshaw 1977, 1983, Fotheringham and Wong 1991). DEMs with finer spatial resolu-
tions than the 1/9th arc-second (~3-m) DEM in this study that are supported by the
LIDAR dataset’s post spacing of 0.7-m could be incorporated in future research to
investigate the sensitivity of the modeled future flood zone to the DEM spatial
resolution.

Another avenue of future research is to compare DEM realizations created using the
different methods described in Wechsler (2007), including various spatial moving
averages, pixel swapping, spatial autoregressive models, and sequential Gaussian simu-
lation, and determine the sensitivity of the future flood model to these different DEM
realizations. These future research endeavors to improve the estimation and incorpora-
tion of DEM uncertainty in coastal flood models should provide greater benefits to
communities with topographic elevations mapped with older, less accurate technologies
than topographic LIDAR.

GIS-based, static methods of modeling future storm surge inundation enhanced by
sea-level rise typically use only a topographic DEM. Dynamic methods directly use
a bathymetric DEM in the hydrodynamic storm surge models, and Amante (2018b)
indicates the vertical uncertainty of offshore bathymetry can be much larger than the
uncertainty of nearshore topography. The depth and shape of the seafloor can influence
storm surge heights, and relatively wide and shallow continental shelves can amplify
storm surge (McInnes et al. 2003, Walsh et al. 2012). The bathymetric uncertainty is often
not incorporated in hydrodynamic storm surge models due to computational expense,
and, therefore, this unincorporated bathymetric uncertainty provides further justification
for using the 2013 Preliminary FIRM to represent additional storm surge uncertainty.
Future research should model future flood zones with dynamic methods that use
bathymetric DEMs directly to validate the GIS-based, static methodology implemented
in this study. Future research should also investigate optimal mesh node locations for
storm surge models based on the vertical uncertainty and horizontal precision of the
underlying DEM (Amante 2018a), and the implications of storm surge mesh node
locations in comparisons between dynamic and static methods of modeling future
coastal flood zones.

This study focused on modeling the future 1% flood zone in Tottenville. Future
research should also identify areas most vulnerable to both the physical hazard of future
coastal flooding, as well as the social vulnerability to coastal flooding (e.g., the SOcial
Vulnerability Index (SOVI), Cutter et al. 2003). Important social factors to consider include
the community’s experience with coastal flooding, and the community’s ability to
respond to, cope with, recover from, and adapt to coastal flooding, which is influenced
by the community’s economic, demographic, and housing characteristics (Cutter et al.
2003). The social data uncertainties should also be incorporated in a similar probabilistic
framework to model the areas and people of Tottenville that are most vulnerable to
future coastal flooding and to quantify its uncertainty.

One large source of uncertainty that is difficult to quantify is a community’s potential
response to expanding flood zones, such as by engineering flood mitigation structures
or with planned retreats from coastlines (Fleming 2018, Lempert 2018). An important
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factor in a community’s potential response is the perceived loss of culture and identity
associated with unique cultural heritage sites and a sense of place (Lempert 2018).
Collaborations between physical and social scientists are needed to incorporate all these
sources of uncertainty in both physical and social models and to determine the overall
vulnerability of communities to future coastal flooding.

Conclusions

This study implemented a Monte Carlo approach to model the future 1% flood zone
extent in Tottenville, NYC in a probabilistic, GIS framework. The future flood model
incorporated the uncertainties in a topographic DEM, present-day 1% flood zone from
storm surge, and future sea-level rise projections. Generated spatiotemporal statistical
products from the 500-member Monte Carlo ensemble indicate the future 1% flood
zone extent and its uncertainty in Tottenville.

The spatiotemporal statistical products indicate areas with high elevations in the center
of the neighborhood should remain protected from coastal inundation into the distant
future (i.e., 2100). Conversely, low-lying areas, such as along the northern and southern
coasts of Tottenville, are already prone to coastal inundation, and the likelihood of being in
the 1% flood zone increases in adjacent areas in future decades. The spatiotemporal
statistical products also indicate the uncertainty in the future flood zone extent that results
from the input data uncertainties and from the terrain itself. Small changes in the modeled
land andwater heights within the estimated uncertainties of the data sources result in larger
uncertainty in the future flood zone extent in low-lying areas with smaller terrain slope.

An interactive web map, UncertainSeas.com, visualizes the likelihood of the future
expansion of the 1% flood zone in Tottenville. The spatiotemporal statistical products
hosted on the web map, combined with additional information on social vulnerability,
can inform coastal management policies to reduce the overall vulnerability of the
people, property and economy of Tottenville, NYC to future coastal inundation.
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